Pre-TCR expression cooperates with TEL-JAK2 to transform immature thymocytes and induce T-cell leukemia.

TitlePre-TCR expression cooperates with TEL-JAK2 to transform immature thymocytes and induce T-cell leukemia.
Publication TypeJournal Article
Year of Publication2007
AuthorsSantos NR dos, Rickman DS, de Reyniès A, Cormier F, Williame M, Blanchard C, Stern M-H, Ghysdael J
JournalBlood
Volume109
Issue9
Pagination3972-81
Date Published2007 May 01
ISSN0006-4971
KeywordsAnimals, CD8-Positive T-Lymphocytes, Cell Differentiation, Cell Proliferation, Cell Transformation, Neoplastic, Gene Expression Regulation, Leukemic, Humans, Leukemia, T-Cell, Mice, Mice, Knockout, Oncogene Proteins, Fusion, Receptors, Antigen, T-Cell, alpha-beta, Signal Transduction, Thymus Gland
Abstract

The TEL-JAK2 gene fusion, which has been identified in human leukemia, encodes a chimeric protein endowed with constitutive tyrosine kinase activity. TEL-JAK2 transgenic expression in the mouse lymphoid lineage results in fatal and rapid T-cell leukemia/lymphoma. In the present report we show that T-cell leukemic cells from EmuSRalpha-TEL-JAK2 transgenic mice present an aberrant CD8(+) differentiation phenotype, as determined by the expression of stage-specific cell surface markers and lineage-specific genes. TEL-JAK2 transforms immature CD4(-)CD8(-) double-negative thymocytes, as demonstrated by the development of T-cell leukemia with full penetrance in a Rag2-deficient genetic background. This disease is similar to the bona fide TEL-JAK2 disease as assessed by phenotypic and gene profiling analyses. Pre-TCR signaling synergizes with TEL-JAK2 to transform immature thymocytes and initiate leukemogenesis as shown by (1) the delayed leukemia onset in Rag2-, CD3epsilon- and pTalpha-deficient mice, (2) the occurrence of recurrent chromosomal alterations in pre-TCR-deficient leukemia, and (3) the correction of delayed leukemia onset in Rag2-deficient TEL-JAK2 mice by an H-Y TCRalphabeta transgene that mimics pre-TCR signaling. Although not affecting leukemia incidence and mouse survival, TCRalphabeta expression was shown to facilitate leukemic cell expansion in secondary lymphoid organs.

DOI10.1182/blood-2006-09-048801
Alternate JournalBlood
PubMed ID17192390
Related Faculty: 
David Rickman, Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700