The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice.

TitleThe p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice.
Publication TypeJournal Article
Year of Publication2010
AuthorsGreenblatt MB, Shim J-H, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JMo, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH
JournalJ Clin Invest
Volume120
Issue7
Pagination2457-73
Date Published2010 Jul
ISSN1558-8238
KeywordsAnimals, Cell Differentiation, CREB-Binding Protein, Humans, MAP Kinase Kinase Kinases, MAP Kinase Signaling System, Mice, Mice, Transgenic, Mitogen-Activated Protein Kinase 14, Mitogen-Activated Protein Kinase Kinases, Osteoblasts, Osteogenesis, p38 Mitogen-Activated Protein Kinases, Phosphorylation, Proto-Oncogene Proteins, Transforming Growth Factor beta
Abstract

Nearly every extracellular ligand that has been found to play a role in regulating bone biology acts, at least in part, through MAPK pathways. Nevertheless, much remains to be learned about the contribution of MAPKs to osteoblast biology in vivo. Here we report that the p38 MAPK pathway is required for normal skeletogenesis in mice, as mice with deletion of any of the MAPK pathway member-encoding genes MAPK kinase 3 (Mkk3), Mkk6, p38a, or p38b displayed profoundly reduced bone mass secondary to defective osteoblast differentiation. Among the MAPK kinase kinase (MAP3K) family, we identified TGF-beta-activated kinase 1 (TAK1; also known as MAP3K7) as the critical activator upstream of p38 in osteoblasts. Osteoblast-specific deletion of Tak1 resulted in clavicular hypoplasia and delayed fontanelle fusion, a phenotype similar to the cleidocranial dysplasia observed in humans haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2). Mechanistic analysis revealed that the TAK1-MKK3/6-p38 MAPK axis phosphorylated Runx2, promoting its association with the coactivator CREB-binding protein (CBP), which was required to regulate osteoblast genetic programs. These findings reveal an in vivo function for p38beta and establish that MAPK signaling is essential for bone formation in vivo. These results also suggest that selective p38beta agonists may represent attractive therapeutic agents to prevent bone loss associated with osteoporosis and aging.

DOI10.1172/JCI42285
Alternate JournalJ Clin Invest
PubMed ID20551513
Grant ListHD055601 / HD / NICHD NIH HHS / United States
HL52555 / HL / NHLBI NIH HHS / United States
Related Faculty: 
Matthew B. Greenblatt, M.D., Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700