The conformational flexibility of the C-terminus of histone H4 promotes histone octamer and nucleosome stability and yeast viability.

TitleThe conformational flexibility of the C-terminus of histone H4 promotes histone octamer and nucleosome stability and yeast viability.
Publication TypeJournal Article
Year of Publication2012
AuthorsChavez MS, Scorgie JK, Dennehey BK, Noone S, Tyler JK, Churchill MEa
JournalEpigenetics Chromatin
Volume5
Issue1
Pagination5
Date Published2012 Apr 27
ISSN1756-8935
Abstract

BACKGROUND: The protein anti-silencing function 1 (Asf1) chaperones histones H3/H4 for assembly into nucleosomes every cell cycle as well as during DNA transcription and repair. Asf1 interacts directly with H4 through the C-terminal tail of H4, which itself interacts with the docking domain of H2A in the nucleosome. The structure of this region of the H4 C-terminus differs greatly in these two contexts.

RESULTS: To investigate the functional consequence of this structural change in histone H4, we restricted the available conformations of the H4 C-terminus and analyzed its effect in vitro and in vivo in Saccharomyces cerevisiae. One such mutation, H4 G94P, had modest effects on the interaction between H4 and Asf1. However, in yeast, flexibility of the C-terminal tail of H4 has essential functions that extend beyond chromatin assembly and disassembly. The H4 G94P mutation resulted in severely sick yeast, although nucleosomes still formed in vivo albeit yielding diffuse micrococcal nuclease ladders. In vitro, H4G4P had modest effects on nucleosome stability, dramatically reduced histone octamer stability, and altered nucleosome sliding ability.

CONCLUSIONS: The functional consequences of altering the conformational flexibility in the C-terminal tail of H4 are severe. Interestingly, despite the detrimental effects of the histone H4 G94P mutant on viability, nucleosome formation was not markedly affected in vivo. However, histone octamer stability and nucleosome stability as well as nucleosome sliding ability were altered in vitro. These studies highlight an important role for correct interactions of the histone H4 C-terminal tail within the histone octamer and suggest that maintenance of a stable histone octamer in vivo is an essential feature of chromatin dynamics.

DOI10.1186/1756-8935-5-5
Alternate JournalEpigenetics Chromatin
PubMed ID22541333
PubMed Central IDPMC3439350
Grant ListP30 CA046934 / CA / NCI NIH HHS / United States
R01 GM064475 / GM / NIGMS NIH HHS / United States
R01 GM079154 / GM / NIGMS NIH HHS / United States
Related Faculty: 
Jessica K. Tyler, Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700