Osteosarcoma oncogene expression detected by in situ hybridization.

TitleOsteosarcoma oncogene expression detected by in situ hybridization.
Publication TypeJournal Article
Year of Publication1995
AuthorsWang H, Rodgers WH, Chmell MJ, Svitek C, Schwartz HS
JournalJ Orthop Res
Volume13
Issue5
Pagination671-8
Date Published1995 Sep
ISSN0736-0266
KeywordsAdult, Animals, Bone Neoplasms, Child, Gene Expression Regulation, Neoplastic, Humans, In Situ Hybridization, Matrix Metalloproteinase 3, Matrix Metalloproteinase 7, Metalloendopeptidases, Mice, Neoplasm Proteins, Neoplasms, Radiation-Induced, Neoplasms, Second Primary, Osteosarcoma, Proto-Oncogene Proteins c-fos, RNA Probes, RNA, Neoplasm, Transforming Growth Factor beta
Abstract

Fifteen archival human osteosarcoma specimens were examined by in situ hybridization for the expression of human and mouse transforming growth factor-beta (isoforms 1, 2, and 3), c-fos, and metalloproteinase (stromelysin-3 and matrilysin). Osteosarcoma subtypes were confirmed by review of patients' radiographs, histopathology, and age at diagnosis. The outcome and method of treatment were documented. The subtypes of osteosarcoma consisted of nine conventional osteosarcomas and two each of fibroblastic, telangiectatic, and post-radiation osteosarcomas. Each specimen was histologically examined under light microscopy, and then adjacent paraffin sections were assayed with sense and anti-sense RNA probes by in situ hybridization. The probes localized to the neoplastic cells, confirming the methodology of the technique. Human transforming growth factor-beta 1 had the most uniform binding affinity to the osteosarcomas examined and was more specific in binding than mouse transforming growth factor-beta 1. Specific mRNA encoding for the transforming growth factor-beta s, c-fos, and metalloproteinases are detectable in patterns within osteosarcoma cells, and collectively, their expression parallels the different histopathologic subtypes. The less differentiated subtypes (telangiectatic and post-radiation osteosarcomas) expressed the fewest molecular markers. Osteosarcoma is a heterogeneous tumor. Differential expression of matrilysin in osteosarcoma is the first reported detection of metalloproteinase activity in human skeletal sarcoma.

DOI10.1002/jor.1100130506
Alternate JournalJ Orthop Res
PubMed ID7472745
Related Faculty: 
William Rodgers, M.D., Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700