Comprehensive 2-dimensional gas chromatography fast quadrupole mass spectrometry (GC × GC-qMS) for urinary steroid profiling: mass spectral characteristics with chemical ionization.

TitleComprehensive 2-dimensional gas chromatography fast quadrupole mass spectrometry (GC × GC-qMS) for urinary steroid profiling: mass spectral characteristics with chemical ionization.
Publication TypeJournal Article
Year of Publication2011
AuthorsZhang Y, Tobias HJ, Auchus RJ, J Brenna T
JournalDrug Test Anal
Volume3
Issue11-12
Pagination857-67
Date Published2011 Nov-Dec
ISSN1942-7611
KeywordsAdult, Doping in Sports, Female, Gas Chromatography-Mass Spectrometry, Humans, Male, Middle Aged, Sensitivity and Specificity, Steroids, Substance Abuse Detection, Young Adult
Abstract

Comprehensive 2-dimensional gas chromatography (GC × GC), coupled to either a time of flight mass spectrometry (TOF-MS) or a fast scanning quadrupole MS (qMS) has greatly increased the peak capacity and separation space compared to conventional GC-MS. However, commercial GC × GC-TOFMS systems are not equipped with chemical ionization (CI) and do not provide dominant molecular ions or enable single ion monitoring for maximal sensitivity. A GC × GC-qMS in mass scanning mode was investigated with electron ionization (EI) and positive CI (PCI), using CH(4) and NH(3) as reagent gases. Compared to EI, PCI-NH(3) produced more abundant molecular ions and high mass, structure-specific ions for steroid acetates. Chromatography in two dimensions was optimized with a mixture of 12 endogenous and 3 standard acetylated steroids (SM15-AC) relevant to doping control. Eleven endogenous target steroid acetates were identified in normal urine based on their two retention times, and EI and PCI-NH(3) mass spectra; nine of these endogenous target steroid acetates were identified in congenital adrenal hyperplasia (CAH) patients. The difference between the urinary steroids profiles of normal individuals and those from CAH patients can easily be visually distinguished by their GC × GC-qMS chromatograms. We focus here on the comparison and interpretation of the various mass spectra of the targeted endogenous steroids. PCI-NH(3) mass spectra were most useful for unambiguous molecular weight determination and for establishing the number of -OH by the losses of one or more acetate groups. We conclude that PCI-NH(3) with GC × GC-qMS provides improved peak capacity and pseudomolecular ions with structural specificity.

DOI10.1002/dta.380
Alternate JournalDrug Test Anal
PubMed ID22147458
Grant ListRR031264 / RR / NCRR NIH HHS / United States
Related Faculty: 
Ying Zhang, M.D., Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700