Regulation of Synovial Inflammation and Tissue Destruction by Guanylate Binding Protein 5 in Synovial Fibroblasts From Patients With Rheumatoid Arthritis and Rats With Adjuvant-Induced Arthritis.

TitleRegulation of Synovial Inflammation and Tissue Destruction by Guanylate Binding Protein 5 in Synovial Fibroblasts From Patients With Rheumatoid Arthritis and Rats With Adjuvant-Induced Arthritis.
Publication TypeJournal Article
Year of Publication2021
AuthorsHaque M, Singh AK, Ouseph MM, Ahmed S
JournalArthritis Rheumatol
Volume73
Issue6
Pagination943-954
Date Published2021 06
ISSN2326-5205
KeywordsAdult, Aged, Animals, Arthritis, Experimental, Arthritis, Rheumatoid, Cytokines, Female, Fibroblasts, Gene Knockdown Techniques, GTP-Binding Proteins, Humans, Inflammation, Male, Middle Aged, Rats, Receptors, Cytokine, RNA-Seq, Synovial Membrane
Abstract

OBJECTIVE: Rheumatoid arthritis synovial fibroblasts (RASFs) are crucial mediators of synovial inflammation and joint destruction. However, their intrinsic immunoregulatory mechanisms under chronic inflammation remain unclear. Thus, the present study was undertaken to understand the role of a newly identified GTPase, guanylate binding protein 5 (GBP-5), in RA pathogenesis.

METHODS: The expression of GBP1-GBP7 transcripts was evaluated using quantitative reverse transcription-polymerase chain reaction in RA synovial tissue or synovial tissue unaffected by RA. Our investigation on transient small interfering RNA (siRNA) knockdown and lentiviral overexpression in human RASFs examined the regulatory role of GBP-5 on proinflammatory cytokine signaling pathways. Unbiased whole transcriptome RNA sequencing analysis was used to assess the impact of GBP-5 on RASF molecular functions. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA) in vivo.

RESULTS: Among different GBPs evaluated, GBP-5 was selectively up-regulated in RA synovial tissue (P < 0.05; n = 4) and in the joints of rats with AIA (P < 0.05; n = 6) and was significantly induced in human RASFs by interleukin-1β (IL-1β), tumor necrosis factor (TNF), and/or interferon-γ (IFNγ) (P < 0.05; n = 3). Bioinformatics analysis of RNA sequencing data identified cytokine-cytokine receptor signaling as a major function altered by GBP-5, with IL-6 signaling as a primary target. Knockdown of GBP-5 amplified IL-1β-induced IL-6, IL-8, and epithelial neutrophil-activating peptide 78/CXCL5 production by 44%, 54%, 45%, respectively, and matrix metalloproteinase 1 (MMP-1) production by several-fold-effects that reversed with exogenously delivered GBP-5. Lack of GBP-5 increased IFNγ-induced proliferation and migration of human RASFs. GBP-5 knockdown in vivo using intraarticular siRNA exacerbated disease onset, severity, synovitis, and bone destruction in rat AIA.

CONCLUSION: Expressed by RASFs in response to cytokine stimulation, GBP-5 has potential to restore cellular homeostasis and blunt inflammation and tissue destruction in RA.

DOI10.1002/art.41611
Alternate JournalArthritis Rheumatol
PubMed ID33615742
Grant ListR01 AR072615 / AR / NIAMS NIH HHS / United States
Related Faculty: 
Madhu Ouseph, M.D., Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700