A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro.

TitleA primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro.
Publication TypeJournal Article
Year of Publication2009
AuthorsDaniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL, Rudin CM, Yung R, Parmigiani G, Dorsch M, Peacock CD, D Watkins N
JournalCancer Res
Volume69
Issue8
Pagination3364-73
Date Published2009 Apr 15
ISSN1538-7445
KeywordsAnimals, Carcinoma, Small Cell, Disease Models, Animal, Gene Expression Profiling, Gene Expression Regulation, Neoplastic, Humans, Lung Neoplasms, Mice, Reproducibility of Results, Transplantation, Heterologous, Tumor Cells, Cultured
Abstract

Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small-cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then reimplanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared with normal lung, primary tumors, xenografts, and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture and that was not regained when the tumors were reestablished as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development.

DOI10.1158/0008-5472.CAN-08-4210
Alternate JournalCancer Res
PubMed ID19351829
Grant List1U54RR023561-01A1 / RR / NCRR NIH HHS / United States
Related Faculty: 
Luigi Marchionni, M.D., Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700