Macrophage and foam cell release of matrix-bound growth factors. Role of plasminogen activation.

TitleMacrophage and foam cell release of matrix-bound growth factors. Role of plasminogen activation.
Publication TypeJournal Article
Year of Publication1993
AuthorsFalcone DJ, McCaffrey TA, Haimovitz-Friedman A, Vergilio JA, Nicholson AC
JournalJ Biol Chem
Volume268
Issue16
Pagination11951-8
Date Published1993 Jun 05
ISSN0021-9258
KeywordsAnimals, Biological Assay, Cell Line, Cells, Cultured, Electrophoresis, Polyacrylamide Gel, Extracellular Matrix, Female, Fibroblast Growth Factor 2, Foam Cells, Growth Substances, Macrophages, Mice, Plasminogen, RNA, Messenger, Transforming Growth Factor beta, Urokinase-Type Plasminogen Activator
Abstract

We have determined whether macrophage derived-foam cells, a prominent component of the atherosclerotic lesion, express more urokinase-type plasminogen activator (uPA) and whether their ability to generate plasmin stimulates the release of matrix-bound growth factors. Steady state levels of uPA mRNA and both membrane and intracellular uPA activities were significantly increased in foam cells. When cultured on cell-derived matrices containing bound 125I-basic fibroblast growth factor (bFGF), both macrophage and foam cells released intact 125I-bFGF into their media. The release of 125I-bFGF by either cell was significantly enhanced in the presence of plasminogen. However, foam cells, which expressed more membrane uPA, released more 125I-bFGF than control cells. The release of matrix-bound bFGF was independent of heparanase activity, since neither macrophage nor foam cells degraded 35SO4-labeled heparan sulfate proteoglycans. In addition, media derived from foam cells cultured on cell-derived matrices in the presence of plasminogen had increased levels of transforming growth factor (TGF) beta activity as compared to cells grown in the absence of plasminogen. In contrast, plasminogen had no effect on TGF-beta activity recovered in the media of foam cells grown on plastic. Moreover, when macrophage were cultured on matrices containing bound 125I-TGF-beta, the release of labeled TGF-beta was increased in the presence of plasminogen. This is the first demonstration that foam cells can release two important growth regulators, bFGF and TGF-beta, from the extracellular matrix, and provides a mechanism by which macrophage and foam cells can stimulate atherosclerotic lesion development.

Alternate JournalJ Biol Chem
PubMed ID8505319
Grant ListHL-35724 / HL / NHLBI NIH HHS / United States
HL-40819 / HL / NHLBI NIH HHS / United States
HL-46403 / HL / NHLBI NIH HHS / United States
Related Faculty: 
Domenick J. Falcone, Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700