The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase.

TitleThe histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase.
Publication TypeJournal Article
Year of Publication2007
AuthorsAdkins MW, Carson JJ, English CM, Ramey CJ, Tyler JK
JournalJ Biol Chem
Volume282
Issue2
Pagination1334-40
Date Published2007 Jan 12
ISSN0021-9258
KeywordsAcetylation, Binding Sites, Cell Cycle Proteins, Histones, Lysine, Molecular Chaperones, Protein Structure, Tertiary, S Phase, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Abstract

Anti-silencing function 1 (Asf1) is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. We have found that budding yeast lacking Asf1 has greatly reduced levels of histone H3 acetylated at lysine 9. Lysine 9 is acetylated on newly synthesized budding yeast histone H3 prior to its assembly onto newly replicated DNA. Accordingly, we found that the vast majority of H3 Lys-9 acetylation peaked in S-phase, and this S-phase peak of H3 lysine 9 acetylation was absent in yeast lacking Asf1. By contrast, deletion of ASF1 has no effect on the S-phase specific peak of H4 lysine 12 acetylation; another modification carried by newly synthesized histones prior to chromatin assembly. We show that Gcn5 is the histone acetyltransferase responsible for the S-phase-specific peak of H3 lysine 9 acetylation. Strikingly, overexpression of Asf1 leads to greatly increased levels of H3 on acetylation on lysine 56 and Gcn5-dependent acetylation on lysine 9. Analysis of a panel of Asf1 mutations that modulate the ability of Asf1 to bind to histones H3/H4 demonstrates that the histone binding activity of Asf1 is required for the acetylation of Lys-9 and Lys-56 on newly synthesized H3. These results demonstrate that Asf1 does not affect the stability of the newly synthesized histones per se, but instead histone binding by Asf1 promotes the efficient acetylation of specific residues of newly synthesized histone H3.

DOI10.1074/jbc.M608025200
Alternate JournalJ Biol Chem
PubMed ID17107956
Grant ListR01 GM064475 / GM / NIGMS NIH HHS / United States
GM064475 / GM / NIGMS NIH HHS / United States
Related Faculty: 
Jessica K. Tyler, Ph.D.

Pathology & Laboratory Medicine 1300 York Avenue New York, NY 10065 Phone: (212) 746-6464
Surgical Pathology: (212) 746-2700