Title | Deployed Deep Learning Kidney Segmentation for Polycystic Kidney Disease MRI. |
Publication Type | Journal Article |
Year of Publication | 2022 |
Authors | Goel A, Shih G, Riyahi S, Jeph S, Dev H, Hu R, Romano D, Teichman K, Blumenfeld JD, Barash I, Chicos I, Rennert H, Prince MR |
Journal | Radiol Artif Intell |
Volume | 4 |
Issue | 2 |
Pagination | e210205 |
Date Published | 2022 Mar |
ISSN | 2638-6100 |
Abstract | This study develops, validates, and deploys deep learning for automated total kidney volume (TKV) measurement (a marker of disease severity) on T2-weighted MRI studies of autosomal dominant polycystic kidney disease (ADPKD). The model was based on the U-Net architecture with an EfficientNet encoder, developed using 213 abdominal MRI studies in 129 patients with ADPKD. Patients were randomly divided into 70% training, 15% validation, and 15% test sets for model development. Model performance was assessed using Dice similarity coefficient (DSC) and Bland-Altman analysis. External validation in 20 patients from outside institutions demonstrated a DSC of 0.98 (IQR, 0.97-0.99) and a Bland-Altman difference of 2.6% (95% CI: 1.0%, 4.1%). Prospective validation in 53 patients demonstrated a DSC of 0.97 (IQR, 0.94-0.98) and a Bland-Altman difference of 3.6% (95% CI: 2.0%, 5.2%). Last, the efficiency of model-assisted annotation was evaluated on the first 50% of prospective cases (n = 28), with a 51% mean reduction in contouring time (P < .001), from 1724 seconds (95% CI: 1373, 2075) to 723 seconds (95% CI: 555, 892). In conclusion, our deployed artificial intelligence pipeline accurately performs automated segmentation for TKV estimation of polycystic kidneys and reduces expert contouring time. Keywords: Convolutional Neural Network (CNN), Segmentation, Kidney ClinicalTrials.gov identification no.: NCT00792155 Supplemental material is available for this article. © RSNA, 2022. |
DOI | 10.1148/ryai.210205 |
Alternate Journal | Radiol Artif Intell |
PubMed ID | 35391774 |
PubMed Central ID | PMC8980881 |
Grant List | UL1 TR002384 / TR / NCATS NIH HHS / United States |
Related Faculty:
Hanna Rennert, Ph.D.